Filter

Subjects

Content Types

Countries

AID systems

API

Data access

Data access restrictions

Database access

Database licenses

Data licenses

Data upload

Data upload restrictions

Enhanced publication

Institution responsibility type

Institution type

Keywords

Metadata standards

PID systems

Provider types

Quality management

Repository languages

Software

Syndications

Repository types

Versioning

  • * at the end of a keyword allows wildcard searches
  • " quotes can be used for searching phrases
  • + represents an AND search (default)
  • | represents an OR search
  • - represents a NOT operation
  • ( and ) implies priority
  • ~N after a word specifies the desired edit distance (fuzziness)
  • ~N after a phrase specifies the desired slop amount
Found 26 result(s)
PathCards is an integrated database of human biological pathways and their annotations. Human pathways were clustered into SuperPaths based on gene content similarity. Each PathCard provides information on one SuperPath which represents one or more human pathways.
MetaCyc is a curated database of experimentally elucidated metabolic pathways from all domains of life. MetaCyc contains pathways involved in both primary and secondary metabolism, as well as associated metabolites, reactions, enzymes, and genes. The goal of MetaCyc is to catalog the universe of metabolism by storing a representative sample of each experimentally elucidated pathway. MetaCyc applications include: Online encyclopedia of metabolism, Prediction of metabolic pathways in sequenced genomes, Support metabolic engineering via enzyme database, Metabolite database aids. metabolomics research.
Pathway Commons is a convenient point of access to biological pathway information collected from public pathway databases. Information is sourced from public pathway databases and is readily searched, visualized, and downloaded. The data is freely available under the license terms of each contributing database.
Country
ConsensusPathDB integrates interaction networks in humans (and in the model organisms - yeast and mouse) including binary and complex protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions, as well as biochemical pathways. Data originate from public resources for interactions and interactions curated from the literature. The interaction data are integrated in a complementary manner to avoid redundancies.
DEPOD - the human DEPhOsphorylation Database (version 1.1) is a manually curated database collecting human active phosphatases, their experimentally verified protein and non-protein substrates and dephosphorylation site information, and pathways in which they are involved. It also provides links to popular kinase databases and protein-protein interaction databases for these phosphatases and substrates. DEPOD aims to be a valuable resource for studying human phosphatases and their substrate specificities and molecular mechanisms; phosphatase-targeted drug discovery and development; connecting phosphatases with kinases through their common substrates; completing the human phosphorylation/dephosphorylation network.
InnateDB is a publicly available database of the genes, proteins, experimentally-verified interactions and signaling pathways involved in the innate immune response of humans, mice and bovines to microbial infection. The database captures an improved coverage of the innate immunity interactome by integrating known interactions and pathways from major public databases together with manually-curated data into a centralised resource. The database can be mined as a knowledgebase or used with our integrated bioinformatics and visualization tools for the systems level analysis of the innate immune response.
Country
Starting September 2013, MINT uses the IntAct database infrastructure to limit the duplication of efforts and to optimise future software development. Data manually curated by the MINT curators can now be accessed from the IntAct homepage at the EBI. Data maintenance and release, MINT PSICQUIC and IMEx services are under the responsibility of the IntAct team, while curation effort will be carried by both groups. The MINT development team now focuses on two new developments: mentha that integrates protein interaction information curated by IMEx databases and SIGNOR a database of logic relationships between human proteins. MINT is a public repository for molecular interactions reported in peer-reviewed journals.IT is a collection of molecular interaction databases that can be used to search for, analyze and graphically display molecular interaction networks and pathways from a wide variety of species. MINT is comprised of separate database components. HomoMINT, is an inferred human protein interatction database. Domino, is database of domain peptide interactions. A new component has been added called VirusMINT that explores the interactions of viral proteins with human proteins.
Country
The Small Molecule Pathway Database (SMPDB) contains small molecule pathways found in humans, which are presented visually. All SMPDB pathways include information on the relevant organs, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Accompanying data includes detailed descriptions and references, providing an overview of the pathway, condition or processes depicted in each diagram.
The European Bioinformatics Institute (EBI) has a long-standing mission to collect, organise and make available databases for biomolecular science. It makes available a collection of databases along with tools to search, download and analyse their content. These databases include DNA and protein sequences and structures, genome annotation, gene expression information, molecular interactions and pathways. Connected to these are linking and descriptive data resources such as protein motifs, ontologies and many others. In many of these efforts, the EBI is a European node in global data-sharing agreements involving, for example, the USA and Japan.
Tthe Lipidomics Gateway - a free, comprehensive website for researchers interested in lipid biology, provided by the LIPID MAPS (Lipid Metabolites and Pathways Strategy) Consortium. The LIPID MAPS Lipidomics Gateway provides a rich collection of information and resources to help you stay abreast of the latest developments in this rapidly expanding field. LIPID Metabolites And Pathways Strategy (LIPID MAPS®) is a multi-institutional effort created in 2003 to identify and quantitate, using a systems biology approach and sophisticated mass spectrometers, all of the major — and many minor — lipid species in mammalian cells, as well as to quantitate the changes in these species in response to perturbation. The ultimate goal of our research is to better understand lipid metabolism and the active role lipids play in diabetes, stroke, cancer, arthritis, Alzheimer's and other lipid-based diseases in order to facilitate development of more effective treatments. Since our inception, we have made great strides toward defining the "lipidome" (an inventory of the thousands of individual lipid molecular species) in the mouse macrophage. We have also worked to make lipid analysis easier and more accessible for the broader scientific community and to advance a robust research infrastructure for the international research community. We share new lipidomics findings and methods, hold annual meetings open to all interested investigators, and are exploring joint efforts to extend the use of these powerful new methods to new applications
Reactome is a manually curated, peer-reviewed pathway database, annotated by expert biologists and cross-referenced to bioinformatics databases. Its aim is to share information in the visual representations of biological pathways in a computationally accessible format. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. These include NCBI Gene, Ensembl and UniProt databases, the UCSC and HapMap Genome Browsers, the KEGG Compound and ChEBI small molecule databases, PubMed, and Gene Ontology.
MalaCards is an integrated database of human maladies and their annotations, modeled on the architecture and richness of the popular GeneCards database of human genes. MalaCards mines and merges varied web data sources to generate a computerized web card for each human disease. Each MalaCard contains disease specific prioritized annotative information, as well as links between associated diseases, leveraging the GeneCards relational database, search engine, and GeneDecks set-distillation tool. As proofs of concept of the search/distill/infer pipeline we find expected elucidations, as well as potentially novel ones.
Country
<<<!!!<<< This repository is no longer available. >>>!!!>>> A human interactome map. The sequencing of the human genome has provided a surprisingly small number of genes, indicating that the complex organization of life is not reflected in the gene number but, rather, in the gene products – that is, in the proteins. These macromolecules regulate the vast majority of cellular processes by their ability to communicate with each other and to assemble into larger functional units. Therefore, the systematic analysis of protein-protein interactions is fundamental for the understanding of protein function, cellular processes and, ultimately, the complexity of life. Moreover, interactome maps are particularly needed to link new proteins to disease pathways and the identification of novel drug targets.
Country
The SABIO-RK is a web-based application based on the SABIO relational database that contains information about biochemical reactions, their kinetic equations with their parameters, and the experimental conditions under which these parameters were measured. It aims to support modellers in the setting-up of models of biochemical networks, but it is also useful for experimentalists or researchers with interest in biochemical reactions and their kinetics. All the data are manually curated and annotated by biological experts, supported by automated consistency checks.
Country
The Life Science Database Archive maintains and stores the datasets generated by life scientists in Japan in a long-term and stable state as national public goods. The Archive makes it easier for many people to search datasets by metadata (description of datasets) in a unified format, and to access and download the datasets with clear terms of use. In addition, the Archive provides datasets in forms friendly to different types of users in public and private institutions, and thereby supports further contribution of each research to life science.
The Database explores the interactions of chemicals and proteins. It integrates information about interactions from metabolic pathways, crystal structures, binding experiments and drug-target relationships. Inferred information from phenotypic effects, text mining and chemical structure similarity is used to predict relations between chemicals. STITCH further allows exploring the network of chemical relations, also in the context of associated binding proteins.
TriTrypDB is an integrated genomic and functional genomic database for pathogens of the family Trypanosomatidae, including organisms in both Leishmania and Trypanosoma genera. TriTrypDB and its continued development are possible through the collaborative efforts between EuPathDB, GeneDB and colleagues at the Seattle Biomedical Research Institute (SBRI).
Giardia lamblia is a significant, environmentally transmitted, human pathogen and an amitochondriate protist. It is a major contributor to the enormous worldwide burden of human diarrheal diseases, yet the basic biology of this parasite is not well understood. No virulence factor has been identified. The Giardia lamblia genome contains only 12 million base pairs distributed onto five chromosomes. Its analysis promises to provide insights about the origins of nuclear genome organization, the metabolic pathways used by parasitic protists, and the cellular biology of host interaction and avoidance of host immune systems. Since the divergence of Giardia lamblia lies close to the transition between eukaryotes and prokaryotes in universal ribosomal RNA phylogenies, it is a valuable, if not unique, model for gaining basic insights into genetic innovations that led to formation of eukaryotic cells. In evolutionary terms, the divergence of this organism is at least twice as ancient as the common ancestor for yeast and man. A detailed study of its genome will provide insights into an early evolutionary stage of eukaryotic chromosome organization as well as other aspects of the prokaryotic / eukaryotic divergence.
TAED is a database of phylogenetically indexed gene families. It contains multiple sequence alignments from MAFFT1, maximum likelihood phylogenetic trees from PhyML2, bootstrap values for each node, dN/dS ratios for each lineage from the free ratios model in PAML3, and labels for each node of speciation or duplication from gene tree/species tree reconciliation using SoftParsMap4. The phylogenetic indexing enables simultaneous viewing of lineages with high dN/dS that occurred along the same species tree branches. Resources from the Protein Data Bank (PDB) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)5, have been incorporated into the TAED analysis to detect substitutions along each branch within the phylogenetic tree and to assess selection within pathways.
<<<!!!<<< This repository is no longer available. >>>!!!>>> The sequencing of several bird genomes and the anticipated sequencing of many more provided the impetus to develop a model organism database devoted to the taxonomic class: Aves. Birds provide model organisms important to the study of neurobiology, immunology, genetics, development, oncology, virology, cardiovascular biology, evolution and a variety of other life sciences. Many bird species are also important to agriculture, providing an enormous worldwide food source worldwide. Genomic approaches are proving invaluable to studying traits that affect meat yield, disease resistance, behavior, and bone development along with many other factors affecting productivity. In this context, BirdBase will serve both biomedical and agricultural researchers.
Rhea is a freely available and comprehensive resource of expert-curated biochemical reactions. It has been designed to provide a non-redundant set of chemical transformations for applications such as the functional annotation of enzymes, pathway inference and metabolic network reconstruction. There are three types of reaction participants (reactants and products): Small molecules, Rhea polymers, Generic compounds. All three types of reaction participants are linked to the ChEBI database (Chemical Entities of Biological Interest) which provides detailed information about structure, formula and charge. Rhea provides built-in validations that ensure both mass and charge balance of the reactions. We have populated the database with the reactions found in the enzyme classification (i.e. in the IntEnz and ENZYME databases), extending it with additional known reactions of biological interest. While the main focus of Rhea is enzyme-catalysed reactions, other biochemical reactions (including those that are often termed "spontaneous") also are included.